Product Characterization

Comparability Protocols for Biotechnological Products

Comparability has become a routine exercise throughout the life cycle of biotechnological products. According to ICH Q5E, a comparability exercise should provide analytical evidence that a product has highly similar quality attributes before and after manufacturing process changes, with no adverse impact on safety or efficacy, including immunogenicity (1). Any doubt about data from such studies could translate into unforeseen pharmacological or nonclinical studies — or worse, clinical studies. Selection of analytical methods and acceptance criteria that will be applied…

Amplifying the Possibilities

Polymerases are natural enzymes that are vital to nucleic acid synthesis: DNA polymerase for replication of deoxyribonucleic acid and RNA polymerase for replication of ribonucleic acid. Thus all living things make and use polymerases of their own. But in 1969, the University of Wisconsin’s Thomas D. Brock and Hudson Freeze identified a new species of extremophilic bacterium thriving at 160 °F (70 °C) in a hot spring in Yellowstone National Park. In time, heat-tolerant polymerase isolated from Thermus aquaticus (Taq)…

High-Yield Production of PASylated Human Growth Hormone Using Secretory E. coli Technology

Since the 1985 approval of the first recombinant human growth hormone (hGH, such as Protropin/somatrem human growth hormone from Genentech, now Roche), the number of clinical indications for therapy with hGH has steadily increased (1). That led to a highly successful drug with more than US$3 billion sales in 2011 (2). Even so, hGH shares a common problem with most other first-generation protein therapeutics: a very short plasma half-life of just about two hours in humans. Because such biologics are…

A Powerful Pairing

Biological product and process characterization are not new to this quality by design (QbD) and process analytical technology (PAT) era. In the 1990s we saw the FDA introduce the concept of well-characterized biologics: an acknowledgment that analytical technology had advanced to the point where the bioprocess did not necessarily (or not fully, anyway) define a biopharmaceutical product. That ultimately led to the regulation of some types of products within the United States moving from the purview of FDA’s Center for…

PEGylation of Biologics

In the 1970s, life-science researchers envisioned protein therapeutics as the ultimate targeted therapy. Companies could use them to address genetic deficiencies and cancer, among other disease classes, as well as to nudge the immune system for treating autoimmune disorders. The first therapeutic proteins were derived from animal or microbial cells, so patients launched immune responses to them that could curtail their activity and produce dangerous side effects. PEGylation was initially used to prevent immune responses with such drugs. PEG is…

Stress-Induced Antibody Aggregates

Biomanufacturing of monoclonal antibodies (MAb) involves a number of unit operations, including cell culture in a bioreactor followed by chromatography and filtration. Purification is intended to remove impurities, such as protein aggregates, but some such operations may actually generate protein aggregation (1). Table 1 summarizes potential sources of aggregate formation during biomanufacturing processes. Aggregates are multimers of native, partially denatured, or fully denatured proteins. Their presence in biological formulations can trigger detrimental immunogenic responses upon administration (2). Moreover, aggregates can…

Tunable Half-Life Technology

While a constantly developing market puts increasing pressure on pharmaceutical companies to provide advanced and personalized therapies, the industry is investing heavily in the development of targeted biologics. The aim is often to take new therapeutics through clinical trials and to market as quickly as possible and to develop more novel, tailored drugs. One common challenge for many biologics is their short plasma half-life. That often leads to reduced bioavailability, meaning that an administered drug will clear from a patient’s…

Biophysical Analysis of Living Cells

Adecades-old technology is finally emerging from clinical laboratories and demonstrating its utility in drug discovery and development. Cell therapy researchers bring their laboratory experiences with them as their science is commercialized. And as biopharmaceutical production engineers incorporate quality by design (QbD) and process analytical technology (PAT) into their work, they find that a method for monitoring the state and distribution of living cells can help build valuable upstream process knowledge. In flow cytometry, cells are suspended in fluid to flow…

Prior-Knowledge Assessments

    Process characterization (PC) studies are experiments performed primarily at laboratory scale to demonstrate process robustness and provide data necessary for planning, risk mitigation, and successful execution of process validation (1, 2). These typically involve extensive, multifactorial testing designed to determine the effects of operational parameter perturbations and raw materials on process performance and product quality (1, 2). Product-specific information from development studies may be used to help guide PC study design; however, such information may be limited or…

A Decade of Characterization

    Over the past 10 years, the biopharmaceutical industry has placed increasing pressure on analytical laboratories, whose work is more important to the success of biotherapeutic products than ever before. Nearly concomitant with the appearance of BPI on the scene, the US Food and Drug Administration put forth its final report on the 21st century good manufacturing practice initiative, which in changing how regulators would review product applications, changed how companies must approach them (1). The guiding principles —…