Supply Chain

Environmental Life-Cycle Assessment of Disposable Bioreactors

    Disposable technology for bioprocessing is efficient and cost effective in many product development scenarios. For an industry dedicated to improving human health, however, the environmental contributions of a product must also influence its bottom line. Product transitions evaluated within a people/planet/profit framework require assessment regarding shifts in human and environmental impact. Life-cycle assessment (LCA) offers one perspective by evaluating the environmental loading of inputs and outputs to a product or process. The contribution of individual product life-cycle stages…

A Prescriptive Approach to Management of Solid Waste from Single-Use Systems

    In biopharmaceutical manufacturing, the disposal of solid waste from single-use systems is becoming an increasingly important issue. The new focus is driven by several major factors including a broadening range of disposable technologies enabling, in some cases, the installation of completely disposable multistage systems; improved scalability of single-use components offering production capacities to thousands of liters; and the environmental impact of waste disposal. The latter concern includes not only regulatory and cost constraints, but also the need for…

Supplier Innovation is an Imperative

    As organizations begin their annual budgeting meetings, the question will inevitably arise: How can we reduce costs and still retain or improve our quality? For some, the answer to the first part may seem easy, but to have a packaged improvement plan that includes both aspects appears to be more indefinable. So what can the biopharm industry do to counter these daily pressures? The answer may not be as elusive as you think. Companies need to drive innovation…

Single-Use Technologies and Other Key Drivers in Biomanufacturing

      The biomanufacturing industry has issues. From key drivers and hurdles, to the spectre of leachables legislation and the need for greater harmonization between suppliers, the biotech sector is experiencing a period of growing competition and increasing pressure. But, it is also a market with a future; the commercial success of more than 350 approved biologics has prompted the biotechnology industry to accelerate discoveries in further protein-based therapeutics, placing greater emphasis upon the importance of biomanufacturing. In addition,…

Environmental Impact of Single-Use and Reusable Bioprocess Systems

    Bioprocess manufacturing systems have incorporated single-use/disposable components for more than 50 years and have demonstrated well-defined process benefits from their use (1,2,3,4,5,6). The environmental impact of single-use technologies, however, has been a major focus of attention only in recent years. This evolving interest has been driven by many factors including concerns over environmental change, emissions, and energy supplies; rapidly increasing costs and restrictions on waste disposal; greater recognition of the role of disposables in bioprocessing; and availability of…

Managing Solid Waste from Single-Use Systems in Biopharmaceutical Manufacturing

    The increasing implementation of single-use systems (SUS) in biopharmaceutical manufacturing has been driven by multiple factors including cost reduction, increased flexibility, improved process development time, and reduced capital investment. But questions are being raised over the disposal of solid waste materials from this alternative technology. Disposal concerns may not be justified on financial considerations because solid-waste disposal costs represent only a small proportion of the total manufacturing costs when using disposable systems (1, 2). Furthermore, comparative studies have…

Data Management in the Supply Chain

Adopting an effective strategy for data and knowledge management throughout the drug development and clinical manufacturing lifecycle is key to maintaining a competitive edge. Significant challenges face each organization seeking to improve efficiency in this area, and they can mostly be attributed to the complex nature of pharmaceutical drug development. Managing both data and knowledge is complicated by the different groups, sites, and partner organizations involved with developing and manufacturing a new drug product. To further compound the problem, a…

Optimizing Vaccine Supply Chains Through Quality Management in Manufacturing

The recent product recalls of PedvaxHib and Comvax vaccine batches are a reminder that the control of vaccine manufacturing processes is of the highest importance. This rings especially true because the target population for these two products is children under the age of five. The Hib vaccine guards against meningitis and other serious infections caused by the bacterium Haemophilus influenzae. In this particular recall, type b vaccine was tested and determined to be free of contaminating microorganisms before being released…

Guide to Disposal of Single-Use Bioprocess Systems

Single-use bioprocess systems can provide a range of environmental benefits beyond those of stainless steel systems. Although single-use systems may generate additional solid waste, benefits include reduction in the amount of water, chemicals, and energy required for cleaning and sanitizing as well as avoiding the labor-intensive cleaning processes required with stainless steel systems (1, 2). One of BPSA’s core activities is to educate users and develop guides on issues pertaining to single-use systems. The organization’s disposals subcommittee was chartered to…

Reconsidering the Supply Chain

An emerging challenge for biotech companies is understanding the bigger picture: How should manufacturing facilities be configured to link together process technologies? Should plants be highly flexible or focus on process standardization? How would a disruptive new technology affect current supply chains, and how could it be implemented? Meeting the challenge requires a complete and detailed understanding of supply chains. Much current focus in process development is on improving operations, with limited consideration to how improvements affect “big picture” variables.…