Two major challenges associated with optimizing biomanufacturing operations remain unresolved. The first is variability: how to understand and improve manufacturing with significant variation in process times throughout all unit operations. The second is complexity: modern biomanufacturing facilities are complex and interconnected, with piping segments, transfer panels, and valve arrays, as well as water for injection (WFI) and other shared resource constraints. That complexity is becoming even greater with the need for process standardization and processing of higher (and…
Manufacturing
Standards Can Help Bring Cell Therapy Products to Market
Companies trying to market cell therapy products face a number of challenges in communicating highly technical knowledge, understanding the nature and complexity of their products, and trying to understand the global regulatory environment within which they must operate. The role standards development organizations (SDOs) play is key to overcoming some of those challenges through a standardization process. The British Standards Institution (BSI) sits at the forefront, developing a number of documents that will increase the chances of cell therapies for…
Improve Process Uniformity and Cell Viability in Cryopreservation
Cell therapies and related cell-based technologies constitute an emerging, fast-growing market with a total value expected to exceed US$100 billion by 2019 (1). Cell therapy is defined as the process of introducing cells to a patient’s tissue for disease treatment. These therapies generally require cryopreservation to maintain sufficient product quality and shelf life. As a common practice, cell therapy manufacturers use controlled-rate freezers to optimize cooling profiles. The goal is to preserve final products in cryopreservation media with the highest…
Revisiting Protein A Chromatography
Due to the molecular complexity of monoclonal antibodies (MAbs) and potential impurities in cell culture media before purification (host-cell proteins, DNA, media components) (1), subsequent downstream operations must consistently and reproducibly purify products to ensure safety and efficacy. The latest member of GE Healthcare’s MabSelect family is called MabSelect SuRe LX (2). As Table 1 shows, it has been developed using the same highly cross-linked agarose base matrix and protein A ligand as for other MAb affinity resins (Table 1).…
Emerging Challenges in Cell Therapy Manufacturing
The introduction of recombinant proteins and monoclonal antibody (MAb) products revolutionized the treatment of many diseases, including diabetes, rheumatoid arthritis, multiple sclerosis, Crohn’s disease, cardiac disease, and cancer. These highly specific biologic therapies provide patients with life- saving approaches that are not possible with small molecules. MAbs in particular are a unique class of biopharmaceutical products that interact with and activate components of the immune system to provide such therapeutic benefits as tumor destruction by antibody-dependent cell-mediated cytotoxicity…
Meeting Regulatory Challenges for Cell-Based Therapies
Many companies follow a general rule when assembling regulatory packages for presenting new biologics: Accentuate the aspects of your new biologic that mimic approved therapies. For companies working on cell-based therapies, however, that is a challenging task. The industry lacks established models, and the current European Medicines Agency (EMA) regulatory definition of a cell-based therapy is simply “an advanced therapy medicinal product†(ATMP) (see EMA guidance box). Regulations for cell therapies cannot always be compared directly with those…
Mastering Industrialization of Cell Therapy Products
Incomes currently generated by the global cell therapy market are estimated to be ~US$400 million. That value represents 10 main products, some of which have been on the market since the late 1990s (e.g., Dermagraft and Apligraf, with >$100 million yearly revenues each). Cell therapy product revenues are low compared with those of the biopharmaceutical market (~$100 billion). But the market’s growth potential and clinical pipeline are leading to higher expectations. The sector’s compound annual growth rate (CAGR),…
Meeting Lot-Size Challenges of Manufacturing Adherent Cells for Therapy
Adherent cells such as adult primary cell lines and human multipotent (MSCs) and pluripotent stem cells (hPSCs) present a manufacturing challenge as lot sizes increase from 109 (billions) to 1012 (trillions) cells (1). Typically, manufacturing platforms are good for one log of expansion. So new methods will be required to achieve commercially relevant lot sizes. Traditional two-dimensional culture methods have been used to grow anchorage-dependent cell types. Although such methods are reliable and well defined, they are very…
Streamlining Cell Therapy Manufacture
The cell therapy industry (CTI) is no longer a cottage industry; it is a distinct and sustainable component of the global healthcare sector (1). Today, CTI prospects are strong, with annual revenues exceeding US$1 billion/year, supported by improving investor sentiment and public support (1,–3). The next phase of CTI growth — toward a multibillion-dollar global industry — will depend on the biomanufacturing community innovating to meet growing market demands and providing products at affordable costs to healthcare payers.…
Small–Batch-Size Production
After coexisting as close cousins in the world of life sciences, the bioprocessing and cell therapy industries now find themselves as possible allies in the pursuit of solutions to small–batch-size production technology. As cell culture titers continue to increase and biotherapies become more “personalized,†pressure is increasing on the bioprocessing industry to find more cost-effective and flexible technologies for producing smaller batch sizes than before. At the same time, the cell therapy industry (renowned for its small–batch-size production)…