Vaccines represent one of the most important medical developments in human history. As recently as a century ago, infectious diseases were the main cause of death worldwide, even in the most developed countries. For instance, the Spanish flu pandemic of 1918 killed more people than all the bullets and bombs did during World War I (1). Today, a vast range of vaccines are available to protect against more than two dozen infectious diseases, especially in pediatrics. Our society…
MAb
Considerations in Scale-Up of Viral Vaccine Production
On 28 June 2011, the Food and Agriculture Organization of the United Nations declared the Rinderpest cattle plague virus to be the second troublesome virus (after smallpox) that humans have eradicated from the Earth (1). Such achievements herald exciting times both for classical vaccinology and for many new and developing technologies. Here we consider scaling up of vaccines and related hybrid, targeted, and conjugated viral therapeutics that are made through animal cell culture. The vaccine industry is now…
Trends and New Technology in Vaccine Manufacturing
Significant changes are sweeping the vaccine manufacturing industry. Demand for human vaccines is predicted to grow significantly — in part driven by needs in emerging countries, where only small fractions of their large and growing populations has access to vaccines. Sustained growth is expected to yield a vaccine market of US$25 billion by the year 2015 (1). Relatively low immunization rates in the Asia–Pacific regions represent significant untapped potential for vaccine manufacturers. Growing populations, increased government funding, and increasing personal…
Pseudomonas fluorescens Expression Technology for Subunit Vaccine Production and Development
New methods and platforms for rapid development and production of effective subunit vaccines have become a 21st-century imperative. Not only is it important to rapidly express and produce a large number of antigens, but those antigens must be expressed and folded such that their effectiveness in preclinical studies is predictive of their potential effectiveness as vaccines. This task has created a bottleneck in vaccine development because recombinant protein expression is difficult and time-consuming, involving a large number of variables. Highly…
New Technologies to Meet the Challenge of Pandemic Influenza
In the early spring of 2009, a new strain of H1N1 influenza emerged and swept across the globe more rapidly than vaccine producers could keep pace. By the time the pandemic abated in February 2010, the US Centers for Disease Control (CDC) estimated that between 8,500 and 17,600 Americans had died from H1N1 infection, with a disproportionate number of deaths occurring among healthy children and young adults. An estimated 15–25% of the nation’s population was exposed to the…
Development of a Universal Influenza Vaccine
Seasonal influenza affects millions of people around the world, with as many as 500,000 deaths annually resulting from influenza-related illnesses. The flu virus undergoes frequent and unpredictable mutations (antigenic drift and shift) that limit the ability of available strain-specific vaccines to protect the population against strains other than those specifically included in a particular season’s flue vaccine. Annual reformulation of the vaccines is needed for annual immunizations. BiondVax Pharmaceuticals Ltd., an Israeli biotechnology company, is developing a universal…
Comparing H1N1 Virus Quantification with a Unique Flow Cytometer and Quantitative PCR
A novel influenza A (H1N1) virus was discovered in Mexico in early 2009 (1). Infections from this strain led to declaration of a pandemic midyear, with about 61 million patients and 13,000 deaths reported by the US Centers for Disease Control (2). Although the pandemic officially ended in August 2010 (3), vaccines are still in demand to protect people against the H1N1 strain that is now expected to circulate seasonally for years to come. To best respond to…
Rapid Process Development for Purification of a MAb
Time and flexibility are essential in purification process development for biopharmaceuticals. Easy translation of experimental ideas into process steps and insight into the effects of changes in chromatography parameters both help speed development and contribute toward achieving quality by design (QbD) objectives. An ability to scientifically design product and process characteristics that meet specific objectives is crucial. Opportunities to eliminate manually intensive steps all support an enhanced development process. A typical monoclonal antibody (MAb) purification process includes three chromatographic purification…
Development of an In-House, Process-Specific ELISA for Detecting HCP in a Therapeutic Antibody, Part 2
During biopharmaceutical manufacturing, final drug products can get contaminated with host-cell proteins (HCPs) derived from a production cell line. HCPs can elicit adverse immune responses, so regulatory authorities require accurate monitoring of their presence and concentration in final drug products. Because they are robust and offer good throughput, enzyme-linked immunosorbent assays (ELISAs) are the first choice for HCP detection to monitor product quality. Generic ELISA kits are commercially available for HCP detection with a number of commonly used…
Development of an In-House, Process-Specific ELISA for Detecting HCP in a Therapeutic Antibody, Part 1
After production and purification of biopharmaceuticals generated by cell culture expression systems, endogenous cell line proteins — commonly referred to as host-cell proteins (HCPs) — sometimes contaminate finished products. HCPs can elicit an immune response following administration of those drugs to patients (1), and cause potentially deleterious side effects. It is therefore imperative to minimize HCP contamination in finished biologics. Regulatory health authorities require monitoring of HCP contamination. They expect validation of each purification process to demonstrate its…