Downstream Single-Use Technologies

Single-Use Tangential Flow Filtration in Bioprocessing

    Single-use (SU) components are widely accepted in bioprocessing due in part to improvements in component design, a wider range of products, and increased scalability. Benefits driving their increased use include elimination of cleaning, improved system flexibility, and reduced risk of contamination. Nonetheless, companies now question how far disposables can be incorporated into bioprocessing unit operations. Results of the second annual survey of the bioprocessing market fo single-use solutions showed that >90% of respondents considered filtration well suited for…

Single-Use Connections Enable Advancements in Aseptic Processing

    Today’s market demand for new drugs — combined with the difficult economic environment — is challenging bioprocessors to review their manufacturing systems and seek ways to make them more flexible, reliable, and cost effective. Increasingly, biomanufacturers are turning to single-use aseptic processing systems to meet or beat aggressive product-introduction timeframes while controlling costs. Innovative new single-use technologies continue to be introduced, giving pharmaceutical companies greater flexibility for replacing traditional stainless tubing, equipment, and even entire process suites with…

Using In-Line Disposable Pressure Sensors to Evaluate Depth Filter Performance

    Development of a recovery process for a fed-batch mammalian cell culture product involves several objectives: process scalability, robustness, maximizing product yield, elimination of subsequent purification steps, and low cost of goods. In an effort to achieve those objectives, we developed a three-stage primary recovery process to remove biomass and clarify the feed stream for downstream column chromatography (Figure 1). The initial stage involves removal of whole cells and larger cellular debris using a continuous disc-stack centrifuge. Depth filtration…

Single-Use, Continuous-Countercurrent, Multicolumn Chromatography

    Manufacturing processes for biopharmaceuticals have undergone significant changes over the past decade. One of the most striking results of improved process sciences is the dramatic rise in expression levels from animal cell cultures. Figure 1 shows how some monoclonal antibody titers have increased about 30-fold over the past 15 years. These increasing titers have allowed current biomanufacturing facilities to produce larger product quantities than anticipated at the time they were designed and built. Figure 1:   As a…

The Road to a Fully Disposable Protein Purification Process

    What’s keeping senior biopharmaceutical executives awake late at night? According to BioPlan Associates, Inc., which publishes an annual comprehensive survey of the state of worldwide biopharmaceutical manufacturing, capacity constraints are among the key issues at hand (1). And one of the most important constraints is the lack of physical capacity in purification equipment. Bioreactors are producing a lot more protein than current downstream purification steps are designed for. Overcoming the resulting bottlenecks may require increasing the productivity of…