Upstream Processing

Seeding Tissue-Engineered Vascular Grafts in a Closed, Disposable Filter–Vacuum System

Tissue engineering is a multidisciplinary science that applies principles from engineering to the biological sciences to create replacement tissues from their cellular components (1). Resulting neotissues can repair or replace native tissues that are diseased, damaged, or congenitally absent. One technique that has come into widespread use is based on seeding cells onto a three-dimensional (3D) biodegradable scaffold that functions as a cell-delivery vehicle (2). Cells attach to the scaffold, which then provides space for neotissue formation and can serve…

A Short History of Cell Culture Media and the Use of Insulin

A surprising history of cell culture media and the use of insulin, outlining the basic developments behind growing mammalian cells.

It will take you on a journey from the late 1800 where organ tissues were kept in balanced salt solutions -BSS- and later PBS, until the early 50’s synthetic media, over chick embryo extract and Eagle’s Minimal Essential Medium (MEM) or its modification by Dulbecco (DMEM). Finally describing insulin mimicking growth factors.

Gram Scale Antibody Production Using CHO Cell Transient Gene Expression (TGE) via Flow Electroporation

MaxCyte flow electroporation provides a universal means of fully scalable, highly efficient CHO-based TGE for the rapid production of gram to multi-gram level s of antibodies without the need for specialized reagents, expression vectors, or engineered CHO cell lines. In this technical note, we present data demonstrating the reproducibility, scalability, and antibody production capabilities of MaxCyte electroporation. Secreted antibody titers routinely exceed 400 mg/L and can exceed 1gram/L following optimization, thereby enabling multi-gram antibody production from a single, CHO cell transfection. In addition, we present data showing the use of MaxCyte electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early and late stage antibody development activities.

Has Your Current LIMS Implementation Been a Nightmare?

Because current traditional LIMS have not delivered on their promise, many organizations are still searching for solutions to optimize their laboratory operations. For those engaged in deploying traditional LIMS, frequent sleep-disturbing issues include poor flexibility and configurability, expensive and time-consuming customization, difficulties extending and upgrading systems, poor usability, lack of modular functionality, poor service/support, problems integrating with existing instrumentation/IT systems and extra time and resources required to meet critical qualification/compliance requirements. Learn how you can avoid the top 5 LIMS nightmares and rest easier with today’s next-generation process and execution-centric LIMS.

2012 in Review

As children growing up, we could barely contain our anticipation for those banner, milestone years: entering first grade, becoming a teenager, turning 16 and then 18, high-school graduation. But even the most innocuous “in-between” years saw notable change and maturation, and 2012 was just such a year for the growing cell therapy sector. Although it is not likely to be noted as a pivotal or breakthrough year, 2012 nonetheless delivered some significant and welcome signposts of continued sector maturation. Here…

Single-Use Technologies in Cell Therapy

Single-use technologies (SUTs) are tools that can be used in producing cell therapies and personalized medicines. Such products must meet specific requirements because of the way they are used. To meet those criteria, the cell therapy industry simply has no alternatives to single-use systems. SUT applications are rapidly changing. Traditional uses for single-use systems in cell therapy include processing in clinical settings (e.g., blood bags, transfer sets) and research and development (e.g., T-flasks, pipettes). Although such applications continue, the commercialization…

Automation of Cell Therapy Biomanufacturing

Biomanufacturing automation is an established mission-critical step in the commercialization pathway for conventional therapeutics, including small molecules and monoclonal antibodies (MAbs) (1). The prospect of a potential biologic progressing into late-stage clinical trials without a robust biomanufacturing strategy to support at least pilot-plant scale bioprocessing is simply unthinkable. Conversely, the cell therapy industry (or at least a significant proportion of it) regard this as a trend that is unlikely to be mirrored as the industry develops. The aim of this…

PEGylation of Biologics

In the 1970s, life-science researchers envisioned protein therapeutics as the ultimate targeted therapy. Companies could use them to address genetic deficiencies and cancer, among other disease classes, as well as to nudge the immune system for treating autoimmune disorders. The first therapeutic proteins were derived from animal or microbial cells, so patients launched immune responses to them that could curtail their activity and produce dangerous side effects. PEGylation was initially used to prevent immune responses with such drugs. PEG is…

Managing Contamination Risk While Maintaining Quality in Cell-Therapy Manufacturing

With an increasing number of cell therapies becoming available for patient use, the need for controlled and consistent manufacturing and delivery of cell products is increasingly important. A closed cell culture process not only offers control and consistency, but may also relieve labor demands. Single-use components within a closed process also can reduce contamination risk. Closed systems with single-use platforms may reduce the risk of biological contamination and cross-contamination that could inadvertently be introduced into cell-culture processes. Such contaminants use…

Stress-Induced Antibody Aggregates

Biomanufacturing of monoclonal antibodies (MAb) involves a number of unit operations, including cell culture in a bioreactor followed by chromatography and filtration. Purification is intended to remove impurities, such as protein aggregates, but some such operations may actually generate protein aggregation (1). Table 1 summarizes potential sources of aggregate formation during biomanufacturing processes. Aggregates are multimers of native, partially denatured, or fully denatured proteins. Their presence in biological formulations can trigger detrimental immunogenic responses upon administration (2). Moreover, aggregates can…