The preceding articles have shown how biopharmaceutical companies increasingly are adopting single-use manufacturing technologies for commercial production facilities as their confidence grows in the material science, supply chains, and robustness of single-use systems. Single-use suppliers can support adoption of end-to-end process platforms in commercial manufacturing settings with dedicated teams of experts in process development, engineering, and regulatory support. Advances in process analytical technology (PAT) are providing engineers with greater information on conditions within their single-use bioprocess platforms to allow for increasing levels of control.
Engineers can define set points for important parameters such as pH, temperature, and dissolved oxygen to provide consistent operation, use PAT tools to measure necessary parameters such as glucose and cell density, and then use regulatory controllers to maintain those parameters at the predefined set points. Some problems come with using this approach in isolation. First, each parameter is controlled independently from the others. Controlling to set points does not necessarily ensure optimum quality or productivity outcomes, nor is the control mechanism updated with new information process variability. More sophisticated control strategies could bring more productive processes and more consistent product quality. The biomanufacturing sector needs the ability, not just to understand what is happening in a bioprocess (triggering an action), but also to understand what will happen in the future based on current conditions. If needed, interventions can be made to modify this future state.