Biopharmaceutical manufacturers use a range of bioprocess containers (BPCs) during the production and storage of biopharmaceuticals. Plastic bags, bottles, flasks, and carboys are all types commonly used in bioprocessing (1). A suitable BPC must be able to maintain aseptic integrity and be constructed of materials that will not harm product efficacy and/or purity. The trend of “single-use” or “disposable” BPC technologies in the biopharmaceutical industry enables greater flexibility and better use of production facilities that are increasingly designed for multiple…
2009
Large-Scale Freezing of Biologics
Production of biologics is expensive. To optimize capacity use, bulk protein solution produced in manufacturing campaigns is often converted into drug product based on market demand, so it may be stored for relatively long periods. To decouple production of bulk solution from that of a final drug product, the bulk is often stored frozen. Transport of frozen bulk between sites offers several practical advantages over bulk transport in the liquid state (2–8 °C). Maintaining 2–8 °C requires accurate systems control…
Nutrient Supplementation Strategies for Biopharmaceutical Production
Cell-culture–related in vitro recombinant protein production is currently a $70-billion/year business. In 2007, biotech drug sales grew by 12.5%, twice as fast as standard pharmaceuticals (1). Current ongoing efforts to maximize productivity in both time and volume directly affect the scale and capital investment required for a bioreactor suite. As cells reach higher concentrations more quickly while each cell pumps out more product than ever before, the number and scale of bioreactors can be reduced. To that end, not only…
Rapid Assessment of Vaccine Potency
The global vaccine market is growing annually by 16% and is expected to reach $21 billion by 2010 (1). Much of the predicted growth of this market is expected to come from the introduction of new vaccines, either against diseases for which no vaccine currently exists or as second-generation products to replace existing ones. Much research is still centered on developing vaccines to prevent infectious diseases caused by microbial and viral pathogens. This segment is being fueled by a number…
Fifth Annual Biopharmaceutical Manufacturing and Development Summit
According to a recent industry survey published in Pharmaceutical Manufacturing, the top three goals of most biopharmaceutical manufacturing companies are to improve in these areas: manufacturing agility, capacity use, and internal quality management. Close on the heels of those top three are improved alignment of internal goals with those of business partners, improved on-time delivery, and reduced inventory. The BMD Summit is the best forum to gain the data and consultation you need to enable you and your interdisciplinary team…
Global Marketplace
Disposable Component ID Product: Single-use tubing and molding components Applications: Biopharmaceutical manufacturing Features: The industry wants reliable identification of components in single-use products. AdvantaPure addresses that with identification solutions that include the AdvantaLabel molded silicone labeling system, PET process-equipment tracking, and GammaTag gamma-irradiation–sterilizable RFID tags. The new DocuLink identification product (patent pending) will soon be launched to provide users a way to reference batch, lot, and validation documentation after installation of a molded-silicone manifold. Contact AdvantaPure www.advantapure.com Hydrophobic Interaction Product:…
Questioning the Downstream Bottleneck
In preparing for our October supplement on bioprocess design, BPI’s contributing editor Lorna D. McLeod spoke with Bayer Healthcare’s Harald Dinter (vice president of global biological development) and Jens Vogel (CMC development team leader and head of isolation and purification in global biological development) about the downstream bottleneck. Is it or isn’t it a real problem? Does the answer depend on your point of view? BPI: “Does a company’s downstream capacity place practical constraints on increasing production titers? Is that…
The Need for a New Process
Surveying BPI readers’ experiences SANJA GJENERO (WWW.SXC.HU) Better, faster, safer: The current drug-development “paradigm” emerging from the FDA is pushing for innovations that reduce process inefficiency and cost. The plethora of new risk-based methodologies include tools being developed as process-analytical-technology (PAT) tools within the encircling parameters of a process design space. All this parallels (and drives) some predictions that the biotechnology industry has seen the last of its blockbuster models, as predictive genomic tools enable personalized approaches to therapeutic development.…
Shrinking the Costs of Bioprocess Development
Process development for large-scale bioproduction is generally more labor-intensive, time-consuming, and expensive than for comparable nonbiological processes because of the large number of individual processes and potential variables involved. To ensure the future commercial viability of biological manufacturing processes and prevent bottlenecks, it is essential to accelerate development of both upstream and downstream processing, as well as to improve process analytics. This not only reduces time and cost factors involved in design of robust bioprocessing protocols, but also reduces the…
DoE Helps Optimize a Cell Culture Bioproduction System
Typical serum-free culture media used in bioprocessing can have 60–90 components at differing concentrations to feed a single cell line. Media used to grow different cell lines for bioprocessing applications may each require unique optimal chemical formulations. Adding complexity, optimal process conditions such as pH and stirring rate may also differ from cell line to cell line depending on the unique characteristics of process performance. To tackle all those variables, we at Invitrogen Corporation of Carlsbad, CA (www.invitrogen.com/pddirect)…