Author Archives: Sylvio Bengio, PhD

A Salt-Tolerant Anion-Exchange Chromatography Sorbent for Flexible Process Development

In most downstream purification processes designed for biopharmaceutical drug production, dilution and diafiltration sequences are unavoidable. Such operations are routinely used to adjust a feedstock or chromatographic fraction to the optimal conditions required for best process performances. Nevertheless, those steps are often time, water, and labor consuming without participating directly in final product purification. Because biopharmaceutical production is increasingly driven by cost reduction, a possible means for enhancing process economics is to streamline purification by eliminating these unit operations before…

Chromatographic Purification in Downstream Processing

          In many biopharmaceutical companies, chromatographic purification in downstream processing is a key focus for optimization studies. The objective is to streamline the process, which may be achieved by the elimination of intermediate unit operations. The main question, therefore, is how to optimize the adjustment of individual chromatographic process steps. Currently there is a broad range of next-generation sorbents and membranes available for process chromatography. These new chromatography media are characterized by significantly improved performance compared…

Improving IEX Throughput and Performance with Differentiated Chromatography Sorbents

    Optimized upstream processing and high-productivity cell culture increase not only target protein titers, but also impurity and contaminant concentrations to be removed from large volumes of feedstock. Simultaneously, biopharmaceutical drug production is increasingly driven by manufacturing cost reduction. These facts together increase the pressure on downstream processing and create an urgent need for more productive and streamlined chromatography operations. Key parameters to consider for enhanced process economics in chromatography are higher protein binding capacities at high flow rates…