Chromatographic separations are vital both to the analysis of biological macromolecules and to their manufacturing. When properly applied, chromatography provides exquisite specificity in separating different molecules from solution based on their size, electrical charge, or other physicochemical properties. Large liquid chromatographic (LC) columns remove host-cell nucleic acids, endotoxins, viruses, and process intermediates from harvest material. Combine high-pressure liquid chromatography (HPLC) with mass spectrometric (MS) or ultraviolet–visible (UV–vis) spectroscopic detection, and you can qualify and quantify macromolecules in such…
Downstream Processing
A Decade of Filtration
Filtration is just as vital to bioprocessing as chromatography — and arguably even more so. Filters are not only used as downstream unit operations in themselves, but also in support of nearly every other step in bioprocessing. Gas or liquid filters ensure the quality of incoming air and feeds for cell culture operations, clean the circulating media in perfusion processes, aid in harvest clarification, and remove buffers from chromatographic eluate after chromatography columns. They are used in formulation…
The Maturation of Single-Use Applications
“Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning.†—Albert Einstein Single-use systems (SUSs) have been treated as novel technologies for some time. I have spent much of the past 10 years introducing clients to SUSs and integrating them into conventional processes. They are part of the biopharmaceutical development and production landscape and a mature, integrated option for bioprocessing. The value of SUS integration is soundly substantiated: reduced cross-contamination risk…
Approaches to Debottlenecking and Process Optimization
Two major challenges associated with optimizing biomanufacturing operations remain unresolved. The first is variability: how to understand and improve manufacturing with significant variation in process times throughout all unit operations. The second is complexity: modern biomanufacturing facilities are complex and interconnected, with piping segments, transfer panels, and valve arrays, as well as water for injection (WFI) and other shared resource constraints. That complexity is becoming even greater with the need for process standardization and processing of higher (and…
Large-Scale, Single-Use Depth Filtration Systems
Clarifying cell culture broth is the first downstream unit operation in an elaborate sequence of steps required to purify a biological therapeutic. A combination of centrifugation, depth filtration, or tangential-flow filtration (TFF) is used for that operation. The availability of largescale, single-use, depth filtration technology in the recent years, however, has given process developers the capability to improve and simplify downstream processes. Clarification of Cell Culture Streams The main purpose of clarification is to efficiently separate…
Integrity Testing of Sterilizing-Grade Filters
Integrity testing of sterilizing-grade filters is necessary to reliably prevent damage to these sterile barriers from compromising the production of biopharmaceuticals. Documented integrity test results are essential to a manufacturing audit trail for releasing pharmaceutical products (1, 2). Accordingly, problems encountered during this testing can lead to considerable financial damages and substantial delays or even entirely prevent a production lot from being released to the market. Therefore, filter integrity testing is a critical step with high economic importance…
An Emerging Answer to the Downstream Bottleneck
Biotechnology companies have invested billions of US dollars in new manufacturing infrastructure, expanding the industry’s total mammalian cell culture production capacity from 670,000 L in 2002 to 2,550,000 L in 2010 (Figure 1) (1). This capacity expansion is estimated to have cost the industry about $20 billion (Figure 2) (1). Figure 1: Macroporous structure of Natrix chromatography media (see () Figure 1: () Figure 2: () That production capacity (and the investment it represents) is…
Retention of Highly Penetrative A. laidlawii Mycoplasma Cells
Mycoplasma are infamous for contaminating cell culture lines at rates as high as 80% (1,2,3,4,5). For biopharmaceutical processes, the inadvertent use of contaminated culture medium or medium components can lead to contamination of an aseptic process-validation media fill or cell culture medium for a bioreactor (6,7,8,9,10,11). Thoroughly testing medium components before use is generally impractical because of the large volume of material in use. Frequently, culture media cannot be autoclaved (because of the presence of heat-sensitive components or…
Key Downstream Problems Decline While Industry Continues to Demand New Technologies
Downstream problems for biomanufacturers finally appear to be lessening. Over the past six years, demand for better purification has topped the list of biomanufacturing areas in need of improvement. This year, however, it appears that purification woes — though still a hot topic — are cooling off. After seven years of measuring the impact on capacity of specific biomanufacturing operations, preliminary data from BioPlan Associates’ ninth annual survey shows that activities associated with both optimizing internal downstream processes (DSPs) and…
Current Issues in Assuring Virological Safety of Biopharmaceuticals
The weakest link in the chain is also the strongest. It can break the chain.— Stanislaw Jerzy Lec, Polish writer, poet and satirist (1906–1966) Biologicals ushered in a new era for treating debilitating and life-threatening illnesses. According to a Pharmaceutical Research and Manufacturers of America (PhRMA) 2011 report, more than 900 biotech medicines and vaccines are in development that are targeting more than 100 diseases (1). Market researchers expect annual sales of biologics (now at about US$100 billion) to grow…