At small to medium scales, single-use technology offers significant advantages over traditional reusable (e.g., stainless steel) manufacturing technology with regard to flexibility, cost of goods, implementation timelines, and maintenance. However, process design based on disposables does create new challenges. With traditional fed-batch processes, harvest clarification is usually achieved by centrifugation followed by depth filtration. For processes based entirely on disposables, the disc-stack centrifuge needs to be replaced by filtration alone. To extend its manufacturing capabilities and capacities, Rentschler decided to…
Analytical
Scaling Up Normal-Flow Microfiltration Processes
Scaling up biological processes from laboratory bench to process scale is complex and requires considering a number of factors to ensure process robustness. Due to variability among raw materials and processes, most process developers use generous safety factors to ensure that their systems are not undersized. Although that method can be reduce process risk, it is inefficient. To improve process efficiency and reduce risk, we conducted a study to identify and quantify key factors that contribute to variability…
Optimization, Robustness, and Scale-Up of MAb Purification
The biopharmaceutical industry needs faster and more efficient development of new drugs and their market introduction as well as shorter process development times for both upstream and downstream operations. It has become more commonplace to use high-throughput development techniques to save time (1). Development is also sped up by applying platform technologies based on the unsurpassed selectivity of protein A resins (2,3,4,5,6), which is the foundation for downstream processing of monoclonal antibodies (MAbs). This is the second of two articles…
Toward Defined Culture Conditions for Pluripotent Stem Cells, Part 1
On 31 March 2011, ~50 delegates attended a workshop organized by STEMCELL Technologies on implications of standard defined culture conditions for embryonic and induced-pluripotent human stem cells as part of the annual meeting of the UK National Stem Cell Network in York, UK. Researchers from both academia and industry need to develop a better understanding of those implications. Our company wanted to give them a better appreciation of key challenges facing ancillary material suppliers who manufacture standard defined…
Considerations in Scale-Up of Viral Vaccine Production
On 28 June 2011, the Food and Agriculture Organization of the United Nations declared the Rinderpest cattle plague virus to be the second troublesome virus (after smallpox) that humans have eradicated from the Earth (1). Such achievements herald exciting times both for classical vaccinology and for many new and developing technologies. Here we consider scaling up of vaccines and related hybrid, targeted, and conjugated viral therapeutics that are made through animal cell culture. The vaccine industry is now…
Uniting Small Molecule and Biologic Drug Perspectives
Cosponsored by CASSS (an international separation science society) and the US Food and Drug Administration (FDA), the January 2010 CMC Strategy Forum explored antibody–drug conjugates (ADCs), which are monoclonal antibodies (MAbs) coupled to cytotoxic agents. The ADC platform of products is being used more and more for clinical evaluation in oncology. More than a dozen companies are developing several types, including products conjugated with calicheamicin, auristatins, and maytansinoids. Such products use the specificity of a MAb to deliver…
Implementation of the ASTM Standard for Manufacturing Systems Verification
In 2007, ASTM International (ASTM), formerly known as the American Society for Testing and Materials, published its “E2500-07” international industry consensus standard for conducting a risk-based design and qualification of good manufacturing practice (GMP) manufacturing systems (1). This guide incorporates risk- and science-based practices to focus on critical aspects affecting equipment systems throughout their design–qualification–operation lifecycle. Presentations at recent PDA and ISPE annual meetings indicate that the bioprocess industry is embracing E2500 to improve system designs and reduce costly validations.…
Key Aspects of Enzyme Activity and Steady-State Kinetics
Living systems rely on enzymes to perform many essential functions for survival. One prime example is digestion, the conversion of food into energy. Each enzyme possesses specific requirements for the types of molecules that it can use as substrates or reactants to convert to products. Here, I provide some basic information about enzymes, explain their biochemical parameters (e.g., kinetic parameters) and significance for characterization, and review related assays currently available to the bioprocess industry. Lactose intolerance is a common enzyme…
Comparing H1N1 Virus Quantification with a Unique Flow Cytometer and Quantitative PCR
A novel influenza A (H1N1) virus was discovered in Mexico in early 2009 (1). Infections from this strain led to declaration of a pandemic midyear, with about 61 million patients and 13,000 deaths reported by the US Centers for Disease Control (2). Although the pandemic officially ended in August 2010 (3), vaccines are still in demand to protect people against the H1N1 strain that is now expected to circulate seasonally for years to come. To best respond to…
Meeting Increased Demands on Cell-Based Processes By Using Defined Media Supplements
Rapidly increasing demand for cell-derived products has placed huge pressures on the biomanufacturing industry’s production capacity requirements. Media development strategies continue to be a primary focus for optimizing output from cell culture systems. Animal cells used in manufacturing protein products have complex nutrient requirements specific for each cell type, clone, and product. Individual nutrient requirements were once addressed by using serum-based media rich in growth factors and supplements, which provided an optimal culture environment for cell growth and productivity (1).…