Single Use

Simpler and More Efficient Viral Vaccine Manufacturing

Human and veterinary vaccines are divided into five main categories: conjugate, toxoid, subunit, inactivated (killed), and live (attenuated) vaccines (1). The vast majority of currently licensed human and veterinary vaccines are inactivated or live (2, 3). They are produced mostly using adherent cells: primary cells such as chicken embryo fibroblasts (CEF), human diploid cells such as MRC-5, or continuous cell lines such as Vero and MDCK (4). The pioneering legacy inherited by vaccine manufacturing development has led to strategies for…

Broadening the Baseline

When the editors of BPI asked us at BPSA to put together a content-rich article on single-use issues, we were happy to do so. Our challenge was how to bring in multiple viewpoints about the growing business of single-use that would be a “quick read” for the BPI audience. The answer: an expert colloquy. Represented here are several of the most qualified industry spokespersons in single-use — all are members of BPSA and speak as directors of the alliance. Their…

Single-Use Pumps Take Center Stage

The multibillion-dollar global biopharmaceutical industry is placing increased emphasis on development and manufacture of advanced biologics. Such products offer exciting potential for the development of drugs that could provide as-yet-unknown treatments for a wide array of diseases. One important goal is to commercialize biologic products as early as possible within the typical 20-year patent window. Patent submission must occur during drug development. Much work follows a patent filing, including further product development, toxicity checks, and clinical trials. Hopefully, US Food…

Implementing Disposable Sampling Devices for Fully Autoclaved Equipment

Sampling is used extensively to monitor both behavior and quality throughout biopharmaceutical processesing (1, 2). Methods must deliver representative samples and — more important — not compromise the integrity of a given unit operation or the process of which it is part. When microorganisms, animal cells, viruses, or nonfilterable materials are involved, sampling methods must not introduce contamination (see the “Regulatory Requirements” box). For successful sampling, three methods have been used routinely over the years: steam-in-place (SIP) valves; aseptic tube…

A Risk-Based Life-Cycle Approach to Implementing Disposables for Facility Flexibility

Plastic-based, single-use, disposables has been prevalent in biotech/pharmaceutical manufacturing processes for decades. Examples of such technologies include filters, gaskets, tubing, sampling bags, carboys, and ultrafiltration/diafiltration (UF/DF) capsules. In recent years, single-use technology has made great leaps in broadening the range of options and applications available. Disposable bioprocess containers are now widely used for applications such as media/buffer preparation and storage, bioreactors and cell culture operations, in-process intermediate containers for manufacturing operations, final drug substance/product containers, and so on. Customized solutions…

The Influence of Polymer Processing on Extractables and Leachables

Polymers provide a unique set of material properties, including toughness, chemical resistance, versatility, and low cost for both multiple-use and single-use bioprocessing systems. Polymer materials are manufactured as fittings and tubing for research and development (R&D) laboratories, as containers for bulk chemical and biological storage, as filters and separation technologies for downstream processing, and as containers and bottles for drug substance storage. These components and systems are helping drug companies improve their manufacturing flexibility, reduce their operating costs and capital…

Supporting Continuous Processing with Advanced Single-Use Technologies

It has been 10 years since the US Food and Drug Administration (FDA) articulated — in its guidance for process analytical technology (PAT) — the goal of “facilitating continuous processing to improve efficiency and manage variability” (1). Since that time, regulators and industry have worked toward applying continuous processing (CP) to all facets of pharmaceutical manufacturing, including bioproduction (2, 3). Last year, the European Medicines Agency (EMA) referred to CP in its draft Guideline on Process Validation, and the FDA…

Seeding Tissue-Engineered Vascular Grafts in a Closed, Disposable Filter–Vacuum System

Tissue engineering is a multidisciplinary science that applies principles from engineering to the biological sciences to create replacement tissues from their cellular components (1). Resulting neotissues can repair or replace native tissues that are diseased, damaged, or congenitally absent. One technique that has come into widespread use is based on seeding cells onto a three-dimensional (3D) biodegradable scaffold that functions as a cell-delivery vehicle (2). Cells attach to the scaffold, which then provides space for neotissue formation and can serve…

Automation of Cell Therapy Biomanufacturing

Biomanufacturing automation is an established mission-critical step in the commercialization pathway for conventional therapeutics, including small molecules and monoclonal antibodies (MAbs) (1). The prospect of a potential biologic progressing into late-stage clinical trials without a robust biomanufacturing strategy to support at least pilot-plant scale bioprocessing is simply unthinkable. Conversely, the cell therapy industry (or at least a significant proportion of it) regard this as a trend that is unlikely to be mirrored as the industry develops. The aim of this…

Evaluation of a New Single-Use UV Sensor for Protein A Capture

As the adoption of single-use systems continues to expand beyond bags and tubing to complete process steps, a full range of sensing technologies will be needed to complement the resulting varied single-use applications. Single-use sensors must meet or exceed the performance of traditional sensing technologies in areas such as accuracy, response time, ease of use, control system integration, process compatibility, regulatory requirements, and cost. Single-use flow-through process sensors are currently available for pressure, temperature, flow, and conductivity. Here, we report…