Bioprocess and pharmaceutical production environments must be well designed to meet strict cleanroom and quality assurance (QA) standards and productivity requirements. Managers may also consider innovative ways to enhance the design of these environments to enable the people critical to their companies’ success to be more productive and effective. In today’s work culture, countless hours can be lost to poor teamwork and ineffective communication. CGMP environments present additional, unique challenges to human interaction because of their built-in process and protocol…
Facility Design/Engineering
The Dinosaurs Reborn: Evaluating Stainless Steel and Disposables in Large-Scale Biomanufacturing
Although a number of biomanufacturers have adopted disposable technologies for small-scale process design, there has been considerable debate over the role of single-use systems in large-scale biopharmaceutical manufacturing— particularly in retrofitting facilities. Some experts have gone so far as to suggest that large-scale stainless steel fermentors are “dinosaurs,†with their large capacities, long installation lead times, and low flexibility. I advocate a systematic approach to look holistically at possible retrofit technologies in existing (stainless steel) facilities, with particular…
Single-Use Systems As Principal Components in Bioproduction
Single-use systems (SUS) have become an accepted component of animal-cell–based bioproduction. No longer a merely exciting possibility, they have emerged as a significant and growing resource for companies to use from process development to manufacturing of approved products. Having been examined for years in less regulated environments, off-the-shelf SUS are now in regular use to some extent in nearly every segment of the production train by contract manufacturing organizations (CMOs) and biopharmaceutical companies in mid-scale production applications. For…
Minimizing the Environmental Footprint of Bioprocesses
Part 1 of this two-part article introduced the need to reduce the environmental footprint of bioprocesses and evaluated the impact of solid-waste disposal. Part 2 continues by describing the effects of the remaining elements of the bioprocess footprint: wastewater, electricity, and air emissions. Wastewater Process Waste Streams: Generally, raw materials to produce and purify biopharmaceuticals fall into one of the following categories: inorganic/organic salts, sugars/polyols, trace elements, vitamins, amino acids, surface active agents, or complex (undefined)…
Containment of High-Potency Products in a GMP Environment
Many modern medicines are highly potent, with only tiny doses required to achieve a therapeutic effect. But a nanomolar medicine poses extra hazards during manufacturing, whether the product is a biologic or a small molecule. These issues have to be evaluated and addressed in the design of a manufacturing facility for such products. Not only is it vital that the product not become contaminated, but employees and the general public must be protected from the product. Exposure to just a…
Challenges in Developing an Infrastructure Strategy
The idea of “thinking globally, but manufacturing locally†to each market is relatively new to the biopharmaceutical industry. As I mentioned in Chapter 2, vaccine makers are more familiar with the concept already. But many technological and economic factors are making other companies aware of this option. Offshoring clinical trials has been of great interest in the pharmaceutical industry for years now. Is it more cost-effective to make clinical materials “here†and ship them “thereâ€â€” or to make…
Manufacture Locally, Market Globally?
One response to a survey we sent out last year kept coming back to me as we prepared this issue. In answer to what a company does if a product in development doesn’t fit into the company’s platform technology, one answer was, “We innovate a solution.†Whether meant seriously or not, it rings true to the history of the industry’s ability to invent and reinvent solutions as necessitated by economic realities. When we began working on the topic…
How Geography Affects the Cost of Biomanufacturing
As the biopharmaceutical industry undergoes restructuring, its focus shifts to the efficiency of drug development and overall costs of delivering affordable medicines. A question often raised concerns the manufacture of drug substances overseas to tap into a cheaper manufacturing base (1). There are many issues to consider when looking at overseas locations, such as intellectual property (IP), the availability of skilled labor, and the emergence of new markets. The situation is more complex with biopharmaceuticals because the products…
Minimizing Costs and Process Times with Local Biomanufacturing
For a growing number of biopharmaceutical companies, the world is getting smaller. They are operating in smaller, more flexible facilities; servicing potentially smaller markets; and managing local products. Local manufacturers are looking for ways of doing standard processing less expensively without making changes that carry regulatory risk. Most of these facilities are vaccine manufacturing sites. The upsurge in localized diseases and need for global pandemic preparedness (especially under uncertain capacities) have countries such as Malaysia, India, China, and Brazil pushing…
Flexible Manufacturing
Flexibility has quickly become one of the most noticeable buzzwords of the bioprocessing industry. Understanding what constitutes a “flexible” process ranges from the simple application of one specific type of technology (e.g., single-use systems, automation, standard controls) to a somewhat extreme concept of a “throw-away” process. But whatever the definition, the factors leading to the need for more flexible approaches to biomanufacture are clear: Rapid, sometimes unexpected, changes in a company’s business situation and/or product portfolio (whether for patients or…