In most downstream purification processes designed for biopharmaceutical drug production, dilution and diafiltration sequences are unavoidable. Such operations are routinely used to adjust a feedstock or chromatographic fraction to the optimal conditions required for best process performances. Nevertheless, those steps are often time, water, and labor consuming without participating directly in final product purification. Because biopharmaceutical production is increasingly driven by cost reduction, a possible means for enhancing process economics is to streamline purification by eliminating these unit operations before…
Separation/Purification
Purifying Common Light-Chain Bispecific Antibodies
A bispecific antibody can bind two different antigens. Immunoglobulin G (IgG) type antibodies have two binding sites with different variable regions. An IgG variable region is made up of a variable light-chain sequence (VL) and a variable heavy-chain sequence (VH). The light chains (LCs) of common LC antibodies are identical for both variable regions, leaving the heavy chain (HC) for generating different specificities. Thus, recombinant host cells for production of common LC bispecific antibodies carry genes for both HCs, with…
Broadening the Baseline
When the editors of BPI asked us at BPSA to put together a content-rich article for the single-use supplement, we were happy to do so. Our challenge was how to bring in multiple viewpoints about the growing business of single-use that would be a “quick read” for the BPI audience. The answer: an expert colloquy (a “conversational exchange or topical dialogue”). Represented here are several of the most qualified industry spokespersons in single-use — all are members of BPSA and…
Stress-Induced Antibody Aggregates
Biomanufacturing of monoclonal antibodies (MAb) involves a number of unit operations, including cell culture in a bioreactor followed by chromatography and filtration. Purification is intended to remove impurities, such as protein aggregates, but some such operations may actually generate protein aggregation (1). Table 1 summarizes potential sources of aggregate formation during biomanufacturing processes. Aggregates are multimers of native, partially denatured, or fully denatured proteins. Their presence in biological formulations can trigger detrimental immunogenic responses upon administration (2). Moreover, aggregates can…
Downstream Technology Landscape for Large-Scale Therapeutic Cell Processing
The cell therapy industry (CTI) is poised to grow rapidly over the next decade, treating millions of patients and generating annual revenues into the tens of billions of US dollars (1, 2). To meet that high-growth demand, large CTI system manufacturers (e.g., Corning, Nunc/Nalgene, and GE Healthcare) and leading contract manufacturing organizations (CMOs, such as Lonza) are developing and integrating new upstream technology platforms such as gas-permeable membranes and microcarrier-based bioreactors to significantly increase therapeutic cell culture productivity. As those…
Advocating an Evolution
In a 2006 report, the US Department of Health and Human Services hailed regenerative medicine as “the vanguard of 21st century healthcare” and “the first truly interdisciplinary field that utilizes and brings together nearly every field in science” (1). To fuel support for regulatory, legislative, and reimbursement initiatives in this new therapeutic class, a small group of scientists, life science business executives, patient advocates, and other experts formed the Alliance for Regenerative Medicine (ARM, http://alliancerm.org). Starting with 17 charter members,…
Performance of a Salt-Tolerant Membrane Adsorber in Flow-Through Mode
Monoclonal antibodies (MAbs) have become the most prevalent therapeutics in the biopharmaceutical industry. Their downstream purification typically involves protein A chromatography as a capture step followed by one or two additional chromatographic polishing steps. Additional unit operations dedicated specifically for viral clearance (e.g., viral inactivation and filtration) are added to ensure product safety. According to a survey of Amgen processes, after processing through a protein A column, only trace amounts of impurities such as Chinese hamster ovary cell protein (CHOP)…
Evaluation of a New Single-Use UV Sensor for Protein A Capture
As the adoption of single-use systems continues to expand beyond bags and tubing to complete process steps, a full range of sensing technologies will be needed to complement the resulting varied single-use applications. Single-use sensors must meet or exceed the performance of traditional sensing technologies in areas such as accuracy, response time, ease of use, control system integration, process compatibility, regulatory requirements, and cost. Single-use flow-through process sensors are currently available for pressure, temperature, flow, and conductivity. Here, we report…
Toward Nonantibody Platforms
Monoclonal antibodies (MAbs) remain the largest segment of the biopharmaceutical market, but they are not the only recombinant proteins in development. Remember that the first biopharmaceutical approved for sale was recombinant insulin — a hormone — back in the 1980s. And proteins aren’t the only recombinant biologics. The sector has expanded since then to include gene therapies and viral vectors, vaccines, and even cells and tissues. Companies around the world are developing such products for cancer, neurological, infectious disease, metabolic,…
A Decade of Processing
About halfway through our first decade in publication, we became well acquainted with a new buzzword phrase in the biopharmaceutical industry: downstream bottleneck (1). This followed on the heels of a manufacturing capacity crunch that had been forecast shortly before BPI made its debut. Thanks to herculean efforts by upstream process and cell-line engineers, that crunch didn’t pan out. In its place, however, high-titer production moved the pressure downstream. Now separation and purification engineers were tasked with handling…