The aim of any company making protein-based therapeutics is to get to the clinic quickly with a product formulation that has the best chance of success. Any number of specific formulation development and manufacturing issues can keep such drugs from advancing expeditiously to the clinic. To be successful organizations must balance the strengths and weaknesses of each individual molecule against timelines, budgets, and priorities. Ultimately, it’s not just about deploying the best methodologies and processes, but of applying them appropriately…
Analytical
Large-Scale Freezing of Biologics
Production of biologics is expensive. To optimize capacity use, bulk protein solution produced in manufacturing campaigns is often converted into drug product based on market demand, so it may be stored for relatively long periods. To decouple production of bulk solution from that of a final drug product, the bulk is often stored frozen. Transport of frozen bulk between sites offers several practical advantages over bulk transport in the liquid state (2–8 °C). Maintaining 2–8 °C requires accurate systems control…
Rapid Assessment of Vaccine Potency
The global vaccine market is growing annually by 16% and is expected to reach $21 billion by 2010 (1). Much of the predicted growth of this market is expected to come from the introduction of new vaccines, either against diseases for which no vaccine currently exists or as second-generation products to replace existing ones. Much research is still centered on developing vaccines to prevent infectious diseases caused by microbial and viral pathogens. This segment is being fueled by a number…
DoE Helps Optimize a Cell Culture Bioproduction System
Typical serum-free culture media used in bioprocessing can have 60–90 components at differing concentrations to feed a single cell line. Media used to grow different cell lines for bioprocessing applications may each require unique optimal chemical formulations. Adding complexity, optimal process conditions such as pH and stirring rate may also differ from cell line to cell line depending on the unique characteristics of process performance. To tackle all those variables, we at Invitrogen Corporation of Carlsbad, CA (www.invitrogen.com/pddirect)…
The Need for a New Process
Surveying BPI readers’ experiences SANJA GJENERO (WWW.SXC.HU) Better, faster, safer: The current drug-development “paradigm” emerging from the FDA is pushing for innovations that reduce process inefficiency and cost. The plethora of new risk-based methodologies include tools being developed as process-analytical-technology (PAT) tools within the encircling parameters of a process design space. All this parallels (and drives) some predictions that the biotechnology industry has seen the last of its blockbuster models, as predictive genomic tools enable personalized approaches to therapeutic development.…
Shrinking the Costs of Bioprocess Development
Process development for large-scale bioproduction is generally more labor-intensive, time-consuming, and expensive than for comparable nonbiological processes because of the large number of individual processes and potential variables involved. To ensure the future commercial viability of biological manufacturing processes and prevent bottlenecks, it is essential to accelerate development of both upstream and downstream processing, as well as to improve process analytics. This not only reduces time and cost factors involved in design of robust bioprocessing protocols, but also reduces the…
Creation of a Well Characterized Small Scale Model for High-Throughput Process Development
Streamlining process development has been the focus of the biotechnology industry over the past several years. To be financially viable in the current market, a company has to be competitive in all three of the following areas: quality, speed, and price (1). Attaining any two of the three attributes at a time is no longer sufficient. With new tools and technologies along with improved understanding of the cell-culture process, doing high-quality process development while reducing both cycle time…
Investigating Flow Distribution and Its Effects on Scale-Up
Depth filtration is widely used in the biopharmaceutical industry to purify target proteins by removing whole cells, cellular debris, fines, aggregates, and colloidal particles from the fermentation broth (1,2). At large scale (>2,000 L), culture harvest from a bioreactor is typically processed with a disc-stack centrifuge to remove cells and cell debris. Although centrifugation is very effective for removing whole cells and larger debris, it cannot remove small-size particles, which remain suspended in the centrate. Depth filters are commonly used…
Promoting Discussion in the Biopharmaceutical Community
The Biopharmaceutical Emerging Best Practices Association (BEBPA) hit the scene in September 2008 with its inaugural Bioassay Conference in Berlin, Germany. A not-for-profit association, BEBPA (www.bebpa.org) is managed by the biopharmaceutical scientific community for the benefit of the biopharmaceutical scientific community: companies, regulators, and clinicians. BEBPA provides an open international forum for the presentation and discussion of scientific issues and problems encountered in the biopharmaceutical community. The purpose of this open discussion is to promote development of innovative approaches and…
Large-Scale Freezing of Biologics
Production of biologics is an expensive process, and to optimize capacity use, bulk protein solution is often produced in manufacturing campaigns. It is converted into drug product based on market demand and therefore may have to be stored for relatively long periods. To decouple the bulk solution production from that of the final drug product, bulk is often stored frozen. Transport of frozen bulk product between sites offers several practical advantages over its transport in the liquid state (2–8 °C).…