It appears that it will take more than just the subprime mortgage crisis to put a dent in biopharmaceutical manufacturing. Based on results of our latest annual report, capacity use in 2007 remained essentially steady for mammalian cell culture: at nearly two-thirds, 63.3% compared with 63.9% the year before (1). Capacity use represents the percentage of an industry’s production capacity that is actually in use. It measures how effectively manufacturers and industries are making use of their fixed assets. This…
2008
The Emerging Generation of Chromatography Tools for Virus Purification
Chromatography media and methods have evolved continuously since their introduction a half century ago. Traditional methods use columns packed with porous particles. They still dominate chromatography applications in the field of virus purification, but the past 20 years have witnessed the ascendance of alternative supports, namely membranes and monoliths. These newer media exploit the familiar surface chemistries — ion exchange, hydrophobic interaction, and affinity — but they use unique architectures that offer compelling performance features. The Architecture of Chromatography Media…
Implementing Single-Use Technology in Biopharmaceutical Manufacturing
In biopharmaceutical manufacturing, single-use components and systems can offer distinct advantages over reusable, cleanable systems. Deciding whether to move to a single-use approach, however, depends on many factors. In a recent review of biomanufacturers and CMOs, the risk of leachable materials entering drug products was highest on a list of end-user concerns, as shown in Figure 1 (1). That’s not surprising in view of the high organic polymer content of disposable components, a general inexperience with such polymeric materials in…
Higher-Order Structure Comparison of Proteins Derived from Different Clones or Processes
Biological product manufacture is a complex process that constantly evolves throughout the lifecycle of each product even after its approval. A number of constraints (such as increased yield, scale-up, or a need for greater purity) can necessitate the redesign or optimization of a given process. Heterogeneity of a biopharmaceutical product at the beginning of its shelf life comes from inherent variations in its production process that lead to various forms of posttranslational modifications and degradation products. Clearly, the foremost aim…
The Orphan Drug Program
It’s been a quarter-century since the Orphan Drug Act became law in 1983. An orphan drug is any therapeutic, vaccine, or blood product that treats a rare disease or condition (one with fewer than 200,000 US patients). Such drugs may be new products or those already approved for other diseases but discovered to treat a rare disease. Drug sponsors must apply for orphan drug designation through the US FDA (1). Similiar status may be obtained in Europe through the EMEA’s…
An Inoculum Expansion Process for Fragile Recombinant CHO Cell Lines
Development of robust inoculum expansion procedures from cell banks is crucial to successful upstream manufacturing processes. Typically, vial thaw and cell culture expansion processes follow well-established procedures. Certain recombinant cell lines, however, need extra attention and development efforts to optimize conditions for robust and reproducible vial thaw and further subculturing. Difficulties in thawing frozen cells might be clone specific or could originate from suboptimal conditions during freezing. Such conditions might not be known initially and could need further optimization at…
Poster Presentations
Production and Economics Friedrich Nachtmann, head of biotech cooperations in biopharmaceuticals at Sandoz GmbH NAFT: Npro Autoprotease Fusion Technology Microbial expression systems play an important role in the biopharmaceutical industry. A robust, scalable, and well-understood process, reduced development times, and competitive costs are requirements for successful manufacturing. In cooperation with the Austrian Center of Biopharmaceutical Technology, Sandoz has developed a platform Escherichia coli expression technology that provides high expression levels and rapid process development for a broad range of peptides…
Biotech Facilities Average a Batch Failure Every 40.6 Weeks
Gathering information about batch failure rates in the biopharmaceutical industry is about as easy as getting politicians to talk about their most embarrassing gaffes and indiscretions. Although it comes as no surprise that batches do fail, some readers may be surprised at how relatively well many organizations appear to be performing. Based on the results of our recently released annual report and survey (1), facilities are experiencing batch failures at an average rate of about one every nine months (40.6…
Manufacturing Patient-Specific Cell Therapy Products
Several cellular therapies are currently progressing through clinical development with the potential to address unmet medical needs affecting millions of patients. As cell-based therapeutics receive regulatory approval and reach the market, the primary challenge will quickly become manufacturing such products in sufficient volume to meet demand. Aastrom Biosciences has developed tissue-repair cell (TRC) technology for use in autologous, patient-specific cellular therapy (PSCT) and is conducting late-stage clinical trials both in the United States and Europe. TRCs are derived from a…
Multicolumn Chromatography
Downstream processing is a sequence of unit process operations that purify biopharmaceuticals and prepare them primarily for bulk formulation (Figure 1). Typically, a large volume (hundreds to thousands of liters containing kilograms of therapeutic protein) is delivered from an upstream fermentation or cell culture process — and this ends up as a small volume (a few liters) of purified concentrate product after processing. Figure 1: () For many years, biopharmaceutical manufacturers have been working to increase capacity, address upstream production…