Figure 1: Current downstream processing strategies for recombinant proteins often require multiple chromatographic steps, which may lead to poor overall product yields. Product purification can be especially difficult when a target protein displays reduced stability, has isoforms or misprocessed variants, or needs to be purified from a complex mixture containing a high level of impurities. Through highly specific antibody–antigen based interactions, affinity chromatography brings significant technical advantage to these protein purification challenges. Developed to tackle such challenges, CaptureSelect™ technology is…
Thursday, August 1, 2013 Daily Archives
KANEKA KanCapAâ„¢
Protein A chromatography is still the preferred capture step in monoclonal antibody (MAb) production because of its high selectivity and robustness, although cation-exchange (CEX) or multimode chromatography techniques are claimed as alternatives. KANEKA KanCapA increases the value of protein A affinity chromatography for MAb production. Kaneka’s unique combination of a proprietary-designed alkaline stable protein A ligand and a highly cross-linked cellulose base matrix meets customer requirements for improved performance, high binding capacity, alkaline and chemical stability for cleaning in place…
Optimizing Conditions for Using Sartobind® STIC Pico and Sartobind® STIC Nano on Liquid Chromatography Systems
Table 1: Sartobind® STIC Pico and Sartobind® STIC Nano are the smallest scalable representatives of the Sartobind® STIC membrane adsorber family. STIC is a salt-tolerant anion-exchange membrane effective at removing contaminants in buffers containing up to 200 mM NaCl, saving time and reducing costs by avoiding buffer changes. The small size and high throughput of these capsules make them perfect for use on automated chromatography systems such as the popular ÄKTA® series offered by GE Biosciences. Although both Pico and…
Purification of Oligonucleotides on TOYOPEARL GigaCap® Q-650S
TOYOPEARL GigaCap Q-650S high capacity, high resolution anion-exchange resin for process scale applications was recently introduced by Tosoh Corporation. This resin, with dynamic binding capacities (DBCs) approaching 190 g/L for bovine serum albumin (BSA), is the newest member of the TOYOPEARL® product line. TOYOPEARL GigaCap Q-650S maintains the high capacity of our popular TOYOPEARL GigaCap Q-650M, and the 35 µm particle size provides high resolution for improved separation of process impurities and aggregates. Introduction The purification of oligonucleotides using anion…
Separation of Monoclonal IgG and Its Aggregates Using TOYOPEARL MX-Trp-650M
The importance of proper aggregate removal during polishing of a monoclonal antibody (MAb) for therapeutic use is beyond controversy. Severe anaphylactic reactions have been described in the literature for the application of aggregated proteins as a drug byproduct. Traditionally, ion-exchange chromatography (IEX) or hydrophobic-interaction chromatography (HIC) are used to purify a structurally homogeneous product. In case those platforms do not satisfy the requirements for MAb polishing, advanced chromatography resins need to be considered. For instance, mixed-mode stationary phases such as…
Large-Scale Expansion of Hepatic Progenitor Cells
Cell therapy is offering a promising future in medical advances. Although multilayer trays are suitable for R&D and preclinical cell amplification, they cannot support large-scale industrial production. A successful transition from laboratory scale to an efficient and robust process based on good manufacturing practice (GMP) is key. The Integrity® Xpansion™ multiplate bioreactors have been specifically designed to enable an easy transfer from existing multiple-tray stacks processes by offering the same cell growth environment on two-dimensional (2D) hydrophylized polystyrene (PS) plates…
Scale-Up of Adherent Vero Cells Grown on Cytodexâ„¢ Microcarriers Using ReadyToProcess Equipment
In cell culture-based vaccine production, scale-up of adherent cells is challenging. This study shows a process for scaling up adherent Vero cells from static cell factories to influenza production at 50 L scale using WAVE Bioreactorâ„¢ systems and ReadyToProcess singleuse equipment. Vero cells were grown to high cell density on Cytodex microcarriers in 10 L working volume. The cells were detached with trypsin and used to seed a 50 L production culture with the same microcarrier concentration. The cells were allowed to reattach and grow on the new microcarriers in a larger Cellbagâ„¢ bioreactor chamber. Cells were subsequently infected with influenza virus. The results show a repeatable scaleup procedure.