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Bioreactor Monitoring,  
Modeling, and Simulation
Christian Julien and William Whitford

M athematical model–based 
simulations of actual 
bioreactor runs suggest how 
process variables such as 

substrate and product concentrations 
change and how nutrient feeding 
should be “tuned” with respect to 
time, pattern, concentration, and 
composition to elicit a desired 
response. Insights gained from 
modeling can guide us in the 
adjustment of a process, reducing the 
number of characterization rounds 
required. Furthermore, comparing 
actual experimental results with model 
predictions helps improve the models 
themselves. It is important to note 
that outputs can vary in unpredictable 
ways if processes are simulated outside 
boundaries set by the models that 
describe them, especially if the true 
operating ranges of actual processes 
are inadequately captured (58). 

Figure 3 lists bioreactor operational 
modes used in bioproduction, which 
are prerequisite to appreciating the 
differences in modeling approaches. 
The modeling of cellular productivity 
in bioreactors presents a formidable 
challenge because of many inherent 
high-degree nonlinearities (especially 
in batch and fed-batch culture modes), 
which are ultimately related to the 
complexities of living cells and the 
dynamics of in vitro culture. In 
response to changes in their culture 
environment, and driven by their 
genetic information, living cells alter 
the rate of their biochemical reactions 
(or the nature of those reactions) by, 
e.g., inducing new enzymes while 

repressing existing ones in an effort to 
find a renewed cellular homeostasis. 
The overall effect of the underlying 
mechanisms of cellular regulation 
dictates a nonlinear behavior in cell 
culture processes. 

The prevalence of fed-batch or 
repeated fed-batch operation in most 
commercial cell culture manufacturing 
processes means that most producers 
are operating not only in an absence of 
the true steady state, but also under 
conditions in which many individual 
processes follow multiple, divergent 
trajectories through the operational 
cycle. This adds to the complexity of 
modeling such operations. Early 
modeling experiences from industrial 
microbial culture processes (22) are of 
rather limited and merely conceptual 
modeling value for our fed-batch 
processes. They are predominantly 
operated in the “steady state” 
continuous mode (23–30) and rely on 
the optimization of steady-state 
culture conditions. That comes from 

the difference in control objectives 
between the two types of culture. In 
continuous mode, the objective is to 
maximize the amount of desired 
product per unit time, whereas in 
batch or fed-batch modes the goal is 
to maximize product at the end of 
each batch, leading to control 
challenges of a different nature. 

Note that another culture mode is 
sometimes used in industrial settings: 
perfusion cell culture. Although 
continuous by design, perfusion 
requires cell retention devices (31–33) 
that present yet another category of 
challenges for dynamic modeling (34). 
Judging from the limited publication 
of results so far, this technique is still 
in its infancy (35). 

Some unstructured models have 
been developed for fed-batch 
microbial (36–39) and mammalian cell 
culture (40–43) processes that model 
cell growth, substrate consumption, 
and product formation. Some describe 
the use of (artificial) neural networks 
(NN) and fuzzy logic (FL). Those 
latter so-called “expert” systems (44–
56) are introducing intriguing 
possibilities. 

Furthermore, reliable sensor 
technologies are seldom found that 
can provide real-time assessment of 
many intra- and extracellular 
activities. Those currently available 
tend to suffer from high complexity, 
insufficient accuracy, risk of 
contamination, or insufficient 
robustness altogether, which makes 
inherently dynamic process states very 
difficult to characterize. 
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Despite all those difficulties, 
process modeling has gained 
enormous popularity among 
bioprocessors because it so facilitates 
process optimization. That holds the 
promise of affecting quite an array of 
production characteristics, including 
increasing product quality and 
reducing manufacturing cost (57), risk, 
and time. In meeting such objectives, 
valuable process models must capture 
the dynamic, multivariate, and 
nonlinear information that enables 
prediction of process trajectories and 
helps us deal effectively with the 
consequences of changing process load 

conditions. Readers unfamiliar with 
the nonlinear modeling classification 
and its techniques can refer to the 
“Foundations in Bioreactor Process 
Modeling” box. 

Process modeling is both a science 
and an art because a good dose of 
creativity is required to make 
assumptions for a computationally 
simple yet predictive model. Modeling 
inherently involves a compromise 
between accuracy (complexity) and the 
cost and effort involved in developing 
a model. Even after having 
determined the boundaries and 
validating a model, preferably with 

Figure 4 (next page) depicts a 
nonexhaustive classification of model 
forms useful in bioreactor modeling and 
simulation. 

Qualitative Models and Fuzzy Logic: A 
qualitative model often can be 
formulated even when the course of a 
culture process is not amenable to 
mathematical modeling. For example, 
discontinuities (e.g., induction steps that 
require a culture to be operated at 
abruptly changing operating regions or 
discrete time and volume changes) occur 
during medium exchange in repeated-
batch culture. The simplest form is the 
“rule-based” model that makes use of “IF–
AND–THEN–ELSE” language to describe 
process behavior. Such rules are often 
elicited from human experts (skilled 
operators). For example, rather than 
attempting to model feed requirements 
mathematically, terms are used such as “IF 
glucose level is too low AND cellular 
oxygen uptake rate is high THEN add 
glucose ELSE do not add glucose.”

“Fuzzy logic” (FL) is intended to rectify 
disadvantages in purely rule-based 
models by invoking some form of 
algebra to enhance accuracy. In 
particular, popular FL algorithms 
combine algebra with linguistics to 
facilitate descriptions of complex 
systems and cope effectively with 
process uncertainty. Fuzzy reasoning 
incorporates real-world system 
knowledge into a model and uses sets 
of “partial membership,” instead of 
traditional data sets. Those are then 
qualified as true or false depending on 
whether each element is or is not 
included in a particular data set. 

Mechanistic Models: Among the most 
commonly used are mechanistic models 
derived from fundamental physics, 
chemistry, and biology governing a 
process. Equations describing process 
conditions are developed from two 
basic sources: metabolite and 
recombinant product level values from 
actual bioreactor experiments 
(heuristic); or the more theoretical  
mass/energy conservation balances and 
kinetics of metabolic reactions 
(deterministic). A set of nonlinear 
ordinary differential equations (ODE) 
and/or partial differential equations 
(PDE) with related algebraic equations 
are compiled to produce mathematical 
models that simulate real systems. 

continued

FOUNDATIONS IN BIOREACTOR 
PROCESS MODELING

Figure 3: Classification of bioreactor operational modes — batch culture is the only closed culture 
mode. Fed-batch, continuous, and perfusion culture are semicontinuous or continuous modes of 
operation as compared with repeated batch and medium exchange, which are discrete culture 
modes of operation.
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reliable experimental data sets, those 
who develop and apply such models 
will appreciate the adage, “All models 
are wrong, but some are useful.” 

Modern Software Tools: Although 
process modeling and simulation tools 
have been available for many years, the 
first such software products dedicated 
for bioprocessing showed up in the 
mid-1990s. Today, several 
commercially available programs, 
often using enhanced graphic features 
and ranging from dedicated packages 
to fully integrated suites, even include 
advanced NN and FL technologies 
(Table 4). Many process simulation 
software packages also incorporate 
data mining and analysis features 
either to find underlying relevant 
relationships within culture data 
matrices (featuring both on- and off-

line data from process variables) or to 
handle data sets that may be corrupted 
by noise or missing data points 
altogether. Although neural networks 
are noise tolerant, it is accepted that 
the best approach for analysis is to 
identify and remove outlying data 
points (either discarding such data or 
converting outliers into missing 
values) by using statistical tools. 

SCALE-DOWN MODELING

Mathematically based simulations 
have much value in process design, 
optimization, and operation, but much 
original data must still be obtained in 
real-world experimentation. Because 
doing so in actual production 
environments is too expensive and 
time-consuming, it is often 
accomplished in scale-down 

ODEs refer to lumped parameters and 
are used to describe behavior in one 
dimension (normally time), whereas 
PDEs refer to distributed parameters and 
account for spatial differences (e.g., 
substrate gradients in large bioreactors). 
A distributed parameter model can be 
considered as unstructured and 
segregated because, although it 
accounts for spatial differences within a 
bioreactor, it is still governed by the 
same unstructured model equations 
that describe what an entire 
subpopulation does in that particular 
area. Although distributed parameter 
models are more complex and more 
difficult to develop and solve, their 
significance is amplified in large 
bioreactors where, e.g., mixing kinetics 
and times may become critical to 
successful bioreactor operation.

“Black Box” Models and Neural 
Networks (Expert Systems): The terms 
black box and empirical models simply 
describe the functional relationships 
between system inputs and system 
outputs. The algorithm parameters 
involved do not necessarily have any 
physical meaning in terms of 
equivalence to actual process variables, 
which present an obvious limitation. 
However, they can often accurately 
model process trajectories. 

Neural networks (NN) are particularly 
suited to modeling complex nonlinear 
processes. Whereas conventional 
computerized approaches solve control 
problems based on algorithms using a 
cognitive computational approach (the 
algorithm to the problem must be 
understood a priori, or the computer 
cannot solve it), neural networks take a 
completely different approach. They are 
composed of a large number of highly 
interconnected processing units 
working in parallel, a concept originally 
inspired by the way the human brain 
processes information (Figure 5). Here, 
the number of component input and 
output “nodes” used is determined by 
the nature of a process modeling 
problem being tackled along with the 
input data representation and the form 
of the required output. 

continued

FOUNDATIONS IN BIOREACTOR 
PROCESS MODELING, CONTINUED

Figure 4: Classification of nonlinear model forms used in bioreactor modeling 
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Figure 5: Common architecture of a feed-forward neural network showing highly interconnected 
nodes akin to the vast network of neurons in a human brain and consisting of three groups of 
layers: four input units connected to one output unit through five hidden units 
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bioreactors (2–5 L) that imitate the 
conditions of full-scale production 
reactors (≥1,000 L). A first principle 
in scale-down design is that often the 
best small-scale conditions must be 
sacrificed in favor of approximating 
those that actually can be achieved in 
a large-scale system. Development of 
scale-down bioreactor models requires 
evaluating two distinct sets of 
parameters: bioreactor design criteria 
(design parameters) and actual culture 
operating parameters (process 
variables). 

Unfortunately, no (stirred-tank) 
bioreactor scale-down design criteria 
are universally applicable. Not all 
design parameters can be maintained 
as identical between large and small 
scales: e.g., volumetric oxygen transfer 
coefficient (KLa), shear rate (a 
function of the impeller tip speed), 
and impeller pumping capacity (or 
f low). A scale-down model using a 
culture vessel of geometrically similar 
scale can be based on

• equal gassed power input per 
volume

• equal KLa
• equal shear rate
• equal mixing time
• or a combination of oxygen 

transfer rate (OTR), shear rate, and 
mixing parameters. 

That final option recognizes that 
two or more parameters may be of 
comparable importance, e.g., shear 
rate and oxygen transfer rate (itself a 
function of KLa and dissolved oxygen 
concentration). Conservation of the 
hydrodynamic behavior between scale-
down and production reactors has 
been a concern for some time, but it is 
much more attainable now than ever 
before with the use of an up-and-
coming technique known as 
computational f luid dynamics (CFD) 
(59, 60). CFD software packages (e.g., 
www.fluent.com, www.cd-adapco.
com) illustrate and calculate velocity 
profiles within culture f luid (across a 
reactor). They are very effective in 
assessing mixing characteristics (shear 
rate, shear stress, and mixing time), 
gas hold-up, gas dispersion, mass 
transfer, and even nutrient addition 
gradients. 

Bioreactors include many 
accessories (e.g., spargers, probes, and 
dip tubes) that are added to the basic 
vessel structure. But their overall 
influence upon hydrodynamic 
behavior appears inconsequential for 
large-scale units. That may not be so, 
however, for small-scale bioreactor 
models because of limitations in 

miniaturizing such accessories. So for 
scale-down models using conventional 
stirred-tank technology, the smallest 
practical volume is about a liter. The 
first step is always identifying critical 
design parameters that will provide 
acceptable criteria upon scale-down.

For a proposed scale-down 
bioreactor model to meaningfully 

Neural networks deploy “hidden” units to 
conceptualize model parameters that are 
not directly accessible, which explains the 
“black-box” nature of the model. The 
activity of each hidden unit and output 
unit is determined by both the activities 
of the previous layer and the weighting 
of the interconnections. Those 
interconnections determine whether it is 
possible for one unit to influence others, 
and scalar weights specify the strength of 
such influence. 

Because neural networks cannot be 
programmed, they must be “taught” to 
perform each particular task by presenting 
the network with training examples using 
historical process data obtained from 
previous culture runs. Such examples 
consist of a pattern of activities for the 
input units together with a desired pattern 
of activities for the output units. To reduce 
the error between desired and actual 
outputs, the scalar weight of each 
connection is adjusted using, for example, 
the popular back propagation algorithm. 
Neural networks “learn” by example similar 
to the way biological systems learn by 
adjusting the inhibition and excitation 
effectiveness of synaptic connections 
between neurons. Because the network 
discovers how to solve a problem by itself, 
its operation can be unpredictable. 
However, an appropriately trained neural 
network can be thought of as an “expert” 
capable of analyzing data and making 
estimations of process values.

The most commonly used NN 
architectures for process modeling and 
control are the feed-forward neural 
network (which allows signals to travel 
from input to output only) and the 
recurrent network (which can have 
signals traveling in both directions by 
introducing loops with an implied 
temporal dependence). One difficulty 
with recurrent networks is determination 
of the best network architecture with 
respect to the number of hidden units. 

Other proposed advanced network 
architectures include dynamic, fuzzy, and 

stacked neural networks. A dynamic 
neural network (DNN) adapts the static 
feed-forward network concept by using 
past process inputs and outputs to predict 
currently appropriate process outputs. 

Because the number of process variables 
and data are often limited, neuro-fuzzy 
networks combine fuzzy logic and neural 
network technology allowing “expert 
rules” to be added to data sets for 
improving overall model robustness. That 
can be very useful in bioreactor processes 
where controlled variables are often 
restricted to a limited range for design 
reasons (e.g., minimum or maximum 
achievable feed rates) or safety reasons 
(e.g., maximum allowable liquid volume 
height, vessel pressure, and so on). 
Capturing real-life experiences from 
skilled operators (expert knowledge) for a 
problem domain augmented with a fair 
dose of common sense can compensate 
for sparse and noisy data, often resulting 
in a faster learning phase. Stacked neural 
networks have been proposed to further 
enhance model accuracy and robustness 
by aggregating several different 
networks, the output of which are 
determined by weighing each individual 
network output against the others for a 
final consensus.

Statistical Models: A statistical approach 
is often required because of uncertainties 
surrounding some process variables. 
According to some, this is the only true 
measure of process uncertainty 
(compared with fuzzy reasoning). 
Probabilistic models are characterized by 
probability density functions of the 
process variables involved, with normal 
distribution being the most commonly 
used. Correlation models quantify the 
degree of similarity between two 
variables by monitoring their variations. 
System dynamics are not captured by 
statistical methods per se, but they play 
an important role in data mining and 
analysis, data compression, principal 
component analysis (PCA), and statistical 
process control (SPC).

FOUNDATIONS IN BIOREACTOR PROCESS MODELING, CONTINUED
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represent performance for a particular 
large-scale culture process, a 
systematic validation study must be 
conducted. Key process variables need 
to be identified, e.g., mixing, 
temperature, pH, dissolved oxygen 
(DO) and dissolved carbon dioxide 
(DCO2). Their relationships with 
bioreactor performance (such as cell 
density and viability, product quality 
and yield, substrate feeding, and waste 
product accumulation) must be 
understood through comparisons with 
profiles from the large-scale process. 
Those relationships are then 
characterized as fully as possible and 
the operating ranges for their 
respective variables determined. 

Particular scale-down modeling 
challenges arise when the assumption 
no longer holds true of a well-mixed 

homogenous bioreactor, without gas-
liquid diffusion limitations. Poor 
mixing can lead to substrate and pH 
gradients, which are in some cases 
amplified by addition of concentrated 
nutrients and reagents at the liquid 
surface. Inadequate mixing also 
promotes DO fluctuations because of 
gas–liquid transfer limitations. Those 
phenomena were first described in 
large-scale production reactors used in 
industrial microbiology settings (61) 
where broth rheology is often non-
Newtonian — but they may also apply 
to ultrahigh-density animal cell 
culture systems. In such cases, 
multicompartment model systems 
(e.g., a stirred-tank reactor integrated 
with a plug f low reactor) have been 
proposed to model and account for 
spatial f luctuations (62–64).

There is a continuing desire to 
decrease culture volumes (and 
consequently culture populations) to 
maximize throughput for cell-line 
screening, media optimization, and 
process development in fully 
controlled “miniature” bioreactor 
systems (<100 mL) with conservation 
of full predictive model power for 
scaled bioreactors. That has spurred 
significant research activities in both 
industry and academia (65–68). Such 
efforts are likely to challenge the 
boundaries of our understanding of 
cellular microenvironments — 
especially with the advent of future 
miniaturization down to the “micro” 
level (<1 mL), which will probably 
require entirely new approaches to 
modeling and validation.

Table 4: A nonexhaustive list of commercially available software for data mining and analysis, bioreactor process modeling and simulation, and beyond

Software Technology Applications Reference

Aspen One Genetic algorithm, hybrid neural 
network, fuzzy logic and linearized 
rigorous models

Comprehensive suite for process industries; 
recipe-based process modeling, analysis, 
simulation, inferential sensors, scale-up, and 
optimization

www.aspentech.com

dataEngine Statistical methods combined with 
neural network and fuzzy logic 

Data analysis and soft computing for process 
industries; integrates into LabView brand or 
other existing control systems 

www.mitgmbh.de

Desire/Neunet Neural networks and fuzzy logic Interactive modeling and simulation of 
dynamic systems

http://members.aol.com/
gatmkorn

G2 NeuOn-Line Neural network Comprehensive suite for process industries 
(data mining, modeling, sensor evaluation, 
prediction, optimization and control)

www.gensym.com

Lucullus Neural fuzzy network Simulation and modeling as part of a process 
information management system

www.biospectra.ch

Neuframe Neural network and fuzzy logic Simulation and process control with expert 
rules

www.neusciences.com

Neunet Pro Neural network Data mining, modeling and prediction www.cormactech.com

NeuroGenetic Optimzer Neural network Older well established data modeling tool www.bio-comp.com

NeuroModel GenOpt Neural network and genetic 
algorithms

Data mining, modeling, plant and process 
analysis, simulation and optimization

www.atlan-tec.com

NeuroSolutions Neural network, fuzzy logic, and 
genetic algorithms

Various neural networks for data mining and 
modeling 

www.nd.com

Matlab and Simulink Model-based design for physical 
system behavior

Popular multipurpose platform for simulation 
and control with particular appeal to 
engineers.

www.mathworks.com

Statistica Statistical process control 
combined with neural network, 
and clustering algorithms

Data mining, process monitoring, predictive 
modeling, and visualization 

www.statsoft.com

SuperPro Designer Material and energy balances with 
comprehensive resource database

Integrated platform for process development, 
manufacturing process modeling, equipment 
sizing, evaluation, scheduling, economics and 
optimization

www.intelligen.com

Viscovery SOMine Self organizing maps, clustering 
techniques, and correlation 
compensation

Data mining, modeling, analysis and 
visualization

www.eudaptics.de
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